

_

Unitat de RMN Centres Científics i Tecnològics

	Relative sen	sitivities in heter	ronuclear	experiments		Universitat o	le Barcelona
5	$S/N \approx N\sqrt{nt}$	*Q* Polarization*µob	s*induction*	'T2/T1* effectiv	ity exp	0	
1.6	Polarization ≈γBo/	KT μ _{obs} ≈γ √I(I+1)	-]	S/N≈ γ _{ex} γ _{obs}	3/2		
L.C	induction $\approx \sqrt{\omega_0} \approx$	$\sqrt{\gamma B_o}$	J				
-	(A) _		Sensivity	I=1H, X=130 γ(1H) ≈ 4γ(13	C)	l=¹H, X=¹⁵ γ(¹H) ≈ 10γ(¹	N ⁵N)
	s 🛨	Direct detection 1D	γs ^{5/2}	γ(¹³ C) ^{5/2}	1	γ(¹⁵ N) ^{5/2}	1
	(B)	INEPT, DEPT — Direct Correlaton HETCOR	Ϋι Ϋ s ^{3/2}	γ(¹ H) γ(¹³ C) ^{3/2}	4	γ(¹ H) γ(¹⁵ N) ^{3/2}	10
2	(C)	reverse INEPT	γ _s γι ^{3/2}	γ(¹³ C) γ(¹ H) ^{3/2}	8	γ(¹⁵ N) γ(¹ H) ^{3/2}	30
	(D)	X filtered 1H HSQC	γι ^{5/2}	γ(¹ H) ^{5/2}	32	γ(¹ H) ^{5/2}	300

	Aspectos a tener en cuenta en el HMQC	Universitat de Barcelona
	El espectro de correlación HMQC muestra acoplamientos H-H el la señal está modulada por el acoplamiento J _k : $cos(W_s t_1)^*cos(p)$ baja resolución utilizada en la dimensión de F ₁ , los acoplamiento suelen observar. No obstante su presencia limita la resolución o ensanchamiento de las señales en F ₁ .	en la dimensión F1, $\mathfrak{y}_{\mathrm{J}_{\mathrm{K}}} t_1$). Debido a la $\mathfrak{y}_{\mathrm{J}_{\mathrm{K}}} t_1$). Debido a se casionando un
P	En el experimento de HSQC no aparecen los acoplamientos ¹ H- ¹ de F1 (principal diferencia entre el HSQC y HMQC)	H , en la dimensión
		00 00
	Adicionalmente la forma de línea en F1 está limitada por la velo de la coherencia de múltiple cuanto IS, que relaja más rá coherencia de simple cuanto. Ello implica que las líneas en F1 e los experimentos de HMQC que en los de HSQC	cidad de relajación pidamente que la son más anchas en
	Unitat de RMN C	entres Científics i Tecnològics

1	Falta de señales relacionados	de correlación si los valo	ores de τ (HSQC) ο Δ (HMQC) no están
1	– Preser • Fa	icia de un alquino en un allo en las correlaciones	a molécula directas H-CΞ	
	• P 60 F	osibilidad de ver correla lz) 	ciones ¹ H, ¹³ C a	dos enlaces (² J _{HC} entre 40 y
Ŧ			¹ J _{CH} (Hz)	
ta		CH _n alifáticos	125-135	
1		CH _n X alifáticos	135-155	HMQC $\triangle =1/(2J_{HX})$
~		Alquenos H-C-C	155-170	
à.		Alquinos H-CEC	240-250	$HSQC T = T/(4J_{HX})$
		Aromáticos	155-165	

